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Abstract

A challenger wants a resource initially held by a defender, who can negotiate a

settlement by offering to share the resource. If challenger rejects, conflict ensues. Dur-

ing conflict each player could be a tough type for whom fighting is costless. Therefore

non-concession intimidates the opponent into conceding. Unlike in models where

negotiations happen in the shadow of exogenously specified conflicts, offers made

during negotiations determine how conflict unfolds if negotiations fail. In turn, how

conflict is expected to unfold determines the players’ negotiating positions. In equi-

librium, negotiations always fail with positive probability, even if players face a high

cost of conflict. Allowing multiple offers leads to brinkmanship—the only accept-

able offer is the one made when conflict is imminent. If negotiations fail, conflict is

prolonged and non-duration dependent.
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1 Introduction

Interstate conflicts begin when negotiations end. But why do negotiations fail to prevent
conflict even when compromise solutions are available, commitment is possible, and con-
flict is likely to be long and painful?1 In the crisis bargaining literature, two parties nego-
tiate in the shadow of an exogenously given conflict.2 If the parties’ costs of fighting the
conflict are private information, then each party has an incentive to misrepresent its real
cost so to build a “reputation.” This process leads to prolonged crises and, possibly, to
war. What drives the choices made during negotiations is the type of conflict the parties
expect, its expected length, and the probability of ultimate victory of each party.

However, how conflict unfolds (its length and the probability of ultimate victory of
each party) is also determined by past negotiations. In fact, by rejecting a generous ul-
timatum offer, one party may signal that its cost of fighting is low, which in turn makes
its opponent more cautious once the conflict begins. In this paper we argue that this
possibility of signaling strength by rejecting a generous offer weakens the effectiveness
of negotiations. In particular, it induces the parties to deliberately make meager offers
which are rejected with strictly positive probability. For example, the Rambouillet Agree-
ment offered by NATO to Yugoslavia before the onset of the Kosovo War was described
as “a provocation, an excuse to start bombing”3 that “deliberately set the bar higher than
the Serbs could accept.”4

To understand this two-way feedback relation between negotiation and conflict, we
develop a model where negotiation and conflict are interlinked. In our model, Challenger
(she) and Defender (he) want a resource that yields flow utility. Defender, who initially
holds the resource, can try to negotiate peace by offering a share to Challenger. If all offers
are rejected, conflict begins. In each period of conflict, Challenger chooses whether to
attack. If she attacks, Defender chooses whether to concede the resource to Challenger. If
Defender does not concede, conflict moves to the following period. Attacks are normally
costly for both Challenger and Defender, but with an arbitrarily small probability either
party is tough—does not experience the cost of attacks.

We fully characterize the set of equilibria of this model when the interval between

1In a seminal paper, Fearon (1995) poses this as a “central puzzle” that rationalist explanations fail to
solve (see also Reiter, 2003). The key word ‘rationalist’ rules out explanations where the parties to the
conflict are entirely or largely irrational.

2Notable examples include Esteban and Sàkovics (2008), Fearon (1992, 1994), Özyurt (2014), Powell
(2004), and Sechser (2010).

3Henry Kissinger, Daily Telegraph, 28 June 1999.
4George Kenney, "Rolling Thunder: the Rerun," The Nation, 27 May 1999.
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periods is sufficiently small. Because whether Challenger is tough is her private informa-
tion, Challenger’s attacks intimidate Defender: they scare Defender that Challenger will
attack again if Defender does not concede. Similarly, because whether Defender is tough
is his private information, not conceding intimidates Challenger: it scares her that further
costly attacks are useless. This logic of intimidation draws from the literature on repu-
tation building in bargaining and wars of attrition (Abreu and Gul, 2000; Chatterjee and
Samuelson, 1988; Ponsatì and Sàkovics, 1995). The small uncertainty about the parties’
payoffs is magnified by equilibrium play into a significant force that protracts conflict.

The same logic of intimidation also explains why the negotiation cannot succeed with
certainty: even if Defender can make offers to Challenger before conflict begins, equi-
librium offers are rejected with strictly positive probability by normal (i.e., not tough)
Challenger. One might imagine that the negotiation fails because Defender is afraid to
reveal whether he is tough or normal. We show that this intuition is incomplete by fo-
cusing on the case of Defender being uninformed, in the sense that he does not know his
cost of pursuing conflict when he makes an offer, but will only discover it if and when
Challenger first attacks. Even in this case where offers do not reveal whether Defender is
tough or normal, the opportunity to make an offer is a double-edged sword for Defender.
On the one hand, higher offers are better for Defender because they have a higher prob-
ability of being accepted. Indeed, if beliefs were held fixed both before and after the ne-
gotiation, Defender could completely avoid conflict with normal Challenger by offering
slightly more than her expected value of entering conflict. On the other hand, a generous
offer that has a high probability of being accepted increases Challenger’s expected payoff
from conflict because it increases Defender’s belief that Challenger is tough if the negoti-
ation fails. Therefore, rather than deterring conflict, more generous offers may encourage
Challenger to seek conflict. We show that in equilibrium Defender always makes an offer
that is both accepted and rejected with strictly positive probability by normal Challenger.
Therefore, conflict begins with positive probability even if Challenger is normal.

This detrimental effect of generous offers is particularly evident when Defender has
multiple chances to make offers. Indeed, suppose that before the last round Defender
makes an offer that normal Challenger accepts with positive probability. Then Challenger
strictly prefers to reject it, as this signals she is tough, thus intimidating Defender into
making an even more generous offer in the last round. In other words, offers that could be
successful (but weren’t) make subsequent offers more costly. We show that in equilibrium
all offers, except the one made in the last round, have vanishingly small probabilities of
acceptance. Therefore, long negotiations resolve in brinkmanship: the parties make no
progress towards a peaceful solution up until the last opportunity to negotiate.
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This brinkmanship result provides an explanation for negotiation in the shadow of
conflict not making any progress until the very last chance. A possible example are the
negotiations leading up to the Treaty of Porthsmouth, which subsequently gained Presi-
dent Theodore Roosevelt the Nobel Peace Prize, in the Russo-Japanese War (1904–1905).
Negotiations for the treaty were held while Russia brought further troops to Manchuria,
a move that would have given Russia an advantage in case of conflict. Fredrik (2010)
notes how the Japanese delegation demanded the southern part of the island of Sakhalin
and war reparations throughout the negotiations. Only upon the arrival of further four
Russian divisions, at what was conceivably their last chance to do so, did the Japanese
drop their claim for reparations and avert conflict.

While in our benchmark model negotiations can only happen before conflict begins,
in reality the parties to a conflict may wish to negotiate also once conflict has begun.
In Section 7 we allow Defender to make offers in any period (and therefore after being
informed about whether he is tough). We show that our main result holds even in this
variation of the model: negotiations fail to avoid conflict with certainty.

A common finding in the empirical literature on both interstate (Bennet and Stam,
1996) and civil (Collier, Hoeffler, and Soderbom, 2004) conflicts is that conflicts are non-
duration dependent: the probability of an additional period of conflict does not depend
on the conflict’s past length. Our framework allows us to explicitly derive the probability
that conflict extends one more period. In equilibrium, if conflict does not end in the very
first period, the probability that it extends from one period to the next is (i) independent
of the probabilities that the players are tough and (ii) equal to a constant strictly less
than 1, until a period we call the conflict horizon in which normal Defender concedes with
certainty. Thus, our model predicts that, until the conflict horizon is reached, conflict is
non-duration dependent.5

Our main contribution is to provide an integrated model of negotiation and conflict.
Without such a model it would be impossible to study the two-way feedback relation by
which negotiations affect conflict and conflict affects negotiations. Essentially, we connect
two literatures: the crisis bargaining literature and the bargaining and reputation litera-
ture. In the crisis bargaining literature, conflict is an exogenously given outside option for
the negotiating parties. Once conflict begins, the parties’ relative military strengths de-

5In contrast, Reiter (2003) notes that existing models of conflict based on informational asymmetries
fail to capture this feature as these asymmetries should fade with time. From a theoretical perspective, our
result that conflict is non-duration dependent is equivalent to the constant concession rate in reputational
models of bargaining (Abreu and Gul, 2000) and international crises in the shadow of conflict (Özyurt,
2014). In our model, armed conflict is itself a reputational game and therefore the parties capitulate at a
constant rate.
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termine the final outcome. This literature focuses on explaining why parties would delay
reaching a settlement and ultimately reach conflict with positive probability. Since Gul,
Sonnenschein, and Wilson (1986) clarified that private information alone cannot lead to
delays in bargaining, a large literature has arisen. Fearon (1994) and Özyurt (2014) model
“audience costs”: further delays increase the cost of conceding to one’s opponent. There-
fore, delaying helps one commit to fighting. In our model, delay happens in spite of this
motive being absent. Furthermore, in contrast with our result, flexible or strategic types
in Özyurt (2014) always concede before war begins.

A different source of delay in bargaining is the one driven by reputation à la Kreps
and Wilson (1982) and Milgrom and Roberts (1982).6 Acharya and Grillo (2015) explicitly
model this reputational motive in a model of crisis bargaining with irrational types. The
option to engage in total war is never exercised in equilibrium, unlike in our model. Nev-
ertheless, the same reputational motives drive the conflict part of our model. An approach
similar to ours is the one by Lapan and Sandler (1988), who model terrorism as a repeated
game between players who are tough with some probability. In their model, absent a con-
cession, the public belief that a player is tough jumps up to an arbitrary and exogenously
given quantity. Hodler and Rohner (2012) make this endogenous, but they have only two
periods, which in turn means that they predict attacks only when the probability of the
terrorist being tough is very large. Our model endogenously determines both the termi-
nation of the war and the evolution of beliefs about the degree of irrationality of one’s
opponent, and shows that prolonged conflict is compatible with very small degrees of
irrationality.

Closer to us, Heifetz and Sagev (2005) study a model of negotiation during war. In
their model, conflict is already happening, but one of the players, the aggressor, can
choose to escalate—essentially increasing the flow cost of conflict. They show that there
exist conditions such that, restricting attention to separating equilibria, the aggressor
chooses to escalate. This is because, if escalation is more costly to the defender than to the
aggressor, escalation both shortens conflict and induces further negotiations more in the
aggressor’s favor. The choice to escalate is similar to our choice to go to conflict, but in
our model the parties go to conflict with strictly positive probability in any equilibrium
even if this decision limits their ability to negotiate further (and for any relative cost of
conflict for Challenger and Defender).

Our logic of brinkmanship shares a common feature with Sechser (2010) who shows
that if conflict is potentially repeated, a player may incur the cost of rejecting an offer to

6Delay also arises in models with a non-common prior so that each player could be overly optimistic
about her chances of being selected as the proposer (Yildiz 2004; Bénabou and Tirole, 2009).
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avoid revealing its weakness in view of future negotiations. In Brito and Intriligator (1985)
time is needed to screen among various types of opponents; in Sánchez-Páges (2009) time
is needed to convey credible information to an uninformed party about the eventual out-
come of rejecting agreements and triggering conflict. In contrast to these three papers,
in our model brinkmanship arises because the uninformed party chooses to avoid giving
the informed party a chance to signal she is tough.

Schelling (1956, 1960, 1966)7 first developed the idea that bargaining parties can ben-
efit if they convince their opponent that they are committed to their threat—hence the
argument that governments should appear committed to hawkish positions when fac-
ing a terrorist threat. But in our model, as well as in Abreu and Gul (2000) and Özyurt
(2014), once conflict begins, the expected payoff for (normal) Defender is independent of
his probability of being tough. In fact, the entire advantage of being perceived as tough
comes from the ability to induce a normal Challenger to attack with very low probability.
But if the Challenger attacks nonetheless, then Defender must update his beliefs to assign
a very high probability to Challenger being tough.

Our idea of intimidation is also related to Silverman (2004), a random-matching model
where violence is instrumental in deterring future violence against oneself. If the fraction
of agents who directly gain from violence is sufficiently large, then other agents can also
engage in it to acquire a reputation for toughness. Yared (2009) considers a defender
with private knowledge of his cost of conceding the flow resource in each period; in
equilibrium the challenger attacks with positive probability when no concession is made,
so that the defender has an incentive to concede often enough. Since costs are drawn
independently across periods, there is no reputation at play, unlike in our model.

2 Benchmark model

In our benchmark model the parties to a resource dispute have a single chance to reach
an agreement before conflict begins. In Section 5 we discuss how our results generalize to
multiple rounds of negotiation.

Time is continuous and indexed by τ ≥ 0, but actions are in discrete time. There are
two players: Challenger (C) and Defender (D). Both players discount future payoffs at
rate r > 0. They contest a resource, which is initially held by Defender. Holding the
resource gives a flow rent normalized to 1.

7See Crawford (1982) for a formal treatment of this idea.
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The game played by Challenger and Defender is best described by dividing it into two
phases: negotiation and conflict.

Negotiation. At time τ = 0, Defender can offer a fraction x of the resource to Challenger.
Upon observing the offer, Challenger decides to accept or reject the offer. If Challenger
accepts the offer, then the game ends and thereafter Challenger and Defender enjoy flow
rents x and (1− x) respectively. Otherwise, the game immediately enters the conflict
phase.

Conflict. In the conflict phase, the following two-stage game is played out at each time
τt = (t− 1) ∆, t ∈ {1, 2, . . . }.

Stage 1: Challenger chooses whether to attack or concede;

Stage 2: Defender chooses whether to resist or concede.

We refer to the interval of time from τt to τt+1 as period t. Notice that there is no time
interval between the two stages.

As soon as one party concedes, the other party gets to enjoy the entire resource in that
period and forever afterwards; thus conflict is less flexible than negotiation.

Types and payoffs. Each player can be of two types: tough or normal. Player i ∈ {C,D}
is tough with non-zero probability πi. Normal types dislike conflict in the sense that in
each period in which Challenger attacks, normal player i suffers losses

Li :=
(
1− e−r∆

)
`i, with `i > 0.

Therefore, in any period in which neither Challenger nor Defender concede, normal Chal-
lenger’s payoff is given by −LC , while normal Defender’s payoff is given by V − LD,
where

V := 1− e−r∆

is the value of holding the resource for one period. As soon as Defender (Challenger)
concedes, Challenger (Defender) enjoys a payoff equal to V from that period onward.
Notice that the cost of the attack is suffered by both players whenever Challenger attacks.
If in any period Challenger attacks and Defender concedes, normal Challenger’s payoff
in that period is V − LC and normal Defender’s payoff is −LD.
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In contrast, both tough Challenger and tough Defender suffer no loss from conflict.
Tough Challenger does not accept any offer short of x = 1 and attacks until Defender
concedes. Tough Defender never makes an offer greater than x = 0 and never concedes.

Challenger privately observes her type at the beginning of the game. Our aim is to
show that negotiation fails even if Defender has no incentive to conceal his type. There-
fore, in our benchmark model we assume that Defender privately observes his type only
if and when conflict begins. While we do this because it better illustrates the logic be-
hind our main results, we also note that this may be a realistic assumption in many con-
flicts. For example, when Challenger attacks using new technologies that have yet to be
proven, both players may be uncertain about Challenger’s ability to overcome Defender’s
defenses and cause him harm. Another example is when Defender is a democratic gov-
ernment who does not know a priori whether the electorate will be able to withstand
Challenger’s attacks. In both cases, Defender will be able to evaluate the losses caused by
Challenger’s first attack and therefore discover his type at the beginning of period 1. The
timing at which players privately observe their types is common knowledge.

Obviously, if LC is too large, then normal Challenger would never carry out an attack,
even if Defender concedes for sure in period 1. Also, if LD is too small, then normal
Defender would never concede, even if Challenger attacks for sure at every period. We
are interested in those cases in which it is at least conceivable for normal Challenger to
attack and for normal Defender to concede. Therefore, we restrict our attention to those
conflicts in which LC is sufficiently small and LD is sufficiently large.

Assumption 1. Let δ ≡ e−r∆ be the discount factor between periods. We assume δLD > V ;
LC < V (1− δ)−1.

Henceforth “equilibrium” refers to perfect Bayesian equilibrium as in Fudenberg and
Tirole (1991), which requires sequentially rational strategies given reasonable beliefs. In what
follows we characterize the equilibrium of the game when the opportunities to attack are
frequent, i.e., when ∆ is sufficiently small. Nonetheless, we solve the conflict phase for
any ∆ > 0, as this allows us to derive precise comparative statics and study the negotia-
tion phase without worrying about equilibrium selection.

2.1 Strategies and beliefs

Negotiation. In the negotiation phase, Defender’s strategy is an offer x in [0, 1]. Normal
Challenger’s strategy α maps any offer to her probability of accepting it. Since tough
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Challenger does not accept offers, Challenger’s total probability of accepting an offer x is
ᾱ (x) =

(
1− πC

)
α (x).

Conflict. LetHi
t denote the set of all possible histories at which player i ∈ {C,D}moves

in period t. Notice that each history hCt ∈ HC
t comprises an offer x, a rejection of the offer,

and t− 1 periods in which Challenger attacks and Defender resists; each history hDt ∈ HD
t

comprises an offer x, a rejection of the offer, t−1 periods in which Challenger attacks and
Defender resists, and a further attack by Challenger in period t. Thus any history hit ∈ Hi

t

at which player i moves is uniquely identified by the offer x and the period t.

In the conflict phase, a (behavior) strategy for the normal type of player i ∈ {C,D}
is a sequence of mappings (σit : [0, 1]→ [0, 1])t∈N, where σit (x) is the probability that nor-
mal player i concedes at the unique history hit that follows offer x. Notice that σit is the
probability with which normal player i concedes in period t, conditional on no previous
concession.

Beliefs. For each stage in each period t ∈ {1, 2, . . . } we define the public (i.e, the oppo-
nent’s) belief that a player is tough at the unique history that follows offer x. At the start
of stage 1 of period t, the public beliefs that Challenger and Defender are tough are given
by πCt−1 (x) and πDt−1 (x) respectively; at the start of stage 2, these public beliefs are πCt (x)
and πDt−1 (x) respectively.8 Of particular importance are the post-negotiation beliefs πi0 (x)
for i ∈ {C,D} with which conflict begins if Challenger rejects the offer made during the
negotiation phase. These beliefs may differ from the priors depending on the offer made.

Total probabilities of concession. Since tough players never concede, the total (condi-
tional) probability of concession of player i in period t is obtained by multiplying the
probability of normal player i by the probability that normal player i concedes:

σ̄it (x) =
(
1− πit−1 (x)

)
σit (x) , i ∈ {C,D} . (1)

3 Preview of results

In this section, we preview our main results. We will show that in equilibrium:

8Notice that in stage 2 the period index differs for Challenger and Defender. This is because Defender’s
belief that Challenger is tough is updated in light of Challenger’s action at stage 1; Challenger’s belief that
Defender is tough is not updated because Defender does not move at stage 1.
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Negotiation fails. Defender makes an offer x∗ that is both accepted and rejected by
normal Challenger with strictly positive probability. Therefore, conflict begins with prob-
ability strictly greater than πC , but strictly smaller than 1.

Even when negotiation fails, the offers made during negotiation affect the belief πC0 (x∗)
Defender holds when conflict begins, in turn affecting how conflict is played. In partic-
ular, a higher probability that negotiation succeeds leads, in case of failure, to a higher
belief that Challenger is tough.

Conflict. In period 1 Challenger attacks with probability 1. Following the first attack,
both normal players mix between attacking (resisting) and conceding for a number n of
periods that depends on πC0 (x∗). After each attack, Defender raises his belief that Chal-
lenger is tough. Similarly, after each time Defender resists, Challenger raises her belief
that Defender is tough. In period n + 1, normal Challenger mixes between attacking and
conceding. Thereafter, both normal players concede with probability 1.

In the following sections, we develop a precise analysis of the equilibrium play, ex-
plain the intuition behind these results, and offer some useful comparative statics. We
solve the game backwards, beginning with the conflict phase.

4 Equilibrium of the conflict phase

We now study equilibrium behavior in the continuation game of conflict after negotiation
has failed: Defender has made an offer x that Challenger rejected. Any such continuation
game begins with post-negotiation beliefs

(
πC0 (x) , πD0 (x)

)
.

In our model, each normal player concedes if he or she believes the enemy to be tough
with probability 1. Since payoffs are continuous in beliefs, so are the optimal strategies.
Therefore, in any period t, if Defender believes Challenger to be tough with sufficiently
high probability, he will concede immediately even if he knows that normal Challenger
will concede in stage 1 of period t + 1 (at her next chance to concede). Similarly, if Chal-
lenger believes Defender to be tough with sufficiently high probability, then she will pre-
fer to concede immediately, even if she knows that normal Defender will concede with
certainty in stage 2 of period t itself (at his next chance to concede). The following lemma
finds these thresholds as π̄C and π̄D defined in (2) and (3).
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Lemma 1 (Threshold beliefs). Let

π̄C := 1
δ

[
1 + LD

]−1
, and (2)

π̄D := 1− LC . (3)

In any continuation equilibrium after Challenger rejects an offer x,

(i) if the strategy of normal Defender is to concede immediately after Challenger attacks in period
t+ 1, then normal Challenger strictly prefers to attack in period t+ 1 if πDt (x) < π̄D, is just
indifferent if πDt (x) = π̄D, and strictly prefers to concede otherwise;

(ii) if the strategy of normal Challenger is to concede in period t+1, then normal Defender strictly
prefers to resist in period t if πCt (x) < π̄C , is just indifferent if πCt (x) = π̄C , and strictly
prefers to concede otherwise.

Proof. In Appendix A.2.

Proposition 1 below completely characterizes the unique equilibrium of the conflict
phase for any ∆ > 0, but under an additional assumption. We show in Appendix A.5 that
when this assumption fails the set of equilibria can still be identified using Proposition 1.
Furthermore, as ∆ becomes small, the expected payoff of all these equilibria converge to
the expected payoff of the equilibrium in Proposition 1. Therefore, as ∆ becomes small,
this assumption plays no role in the determination of the expected payoffs in the conflict
game and the unique equilibrium of the whole model.

Assumption 2. The quantities ln πD0 (x) / ln π̄D and ln πC0 (x) / ln π̄C are not integers.

Equilibrium play after negotiation fails crucially depends on how the post-negotiation
public beliefs, πC0 (x) and πD0 (x), compare to their respective thresholds, π̄C and π̄D. First,
the number of periods for which normal Challenger attacks and normal Defender resists
with strictly positive probability depends on the conflict horizon.

Definition 1. The conflict horizon is the largest non-negative integer n such that πC0 (x) <(
π̄C
)n

and πD0 (x) <
(
π̄D
)n

.

Second, the continuation equilibrium once negotiation has failed is unique, but it can
be of one of two types, depending on the post-negotiation public beliefs πC0 (x) and πD0 (x).
What matters is whether Challenger or Defender are perceived to be more or less tough,
compared to what would be needed to induce the other player to concede immediately. If
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πC0 (x) is sufficiently closer to π̄C than πD0 (x) is to π̄D, then we say that Challenger is more
intimidating. Otherwise we say that Defender is more intimidating. As we shall see, when
negotiation fails, then conflict always begins with Challenger being more intimidating.

Proposition 1. Any continuation game beginning with beliefs
(
πC0 (x) , πD0 (x)

)
, conflict horizon

n, and thresholds π̄C and π̄D defined in (2) and (3) admits a unique continuation equilibrium. In
this equilibrium:

1. If
(
π̄C
)n+1

< πC0 (x) <
(
π̄C
)n

and πD0 (x) <
(
π̄D
)n+1

(Challenger is more intimidating), in
period t = 1, Challenger attacks with probability 1, Defender concedes with total probability

σ̄D1 (x) = 1− πD0 (x)
(π̄D)n , (4)

and πC1 (x) = πC0 (x) and πD1 (x) =
(
π̄D
)n

. From stage 1, period t = 2 to stage 1, period
t = n+1, Challenger and Defender concede with total probability σ̄it (x) = 1− π̄i and beliefs
evolve according to

πit (x) = πit−1 (x)
π̄C

, i ∈ {C,D} . (5)

2. If
(
π̄D
)n+1

< πD0 (x) <
(
π̄D
)n

and πC0 (x) <
(
π̄C
)n

(Defender is more intimidating), in
period t = 1, Challenger concedes with total probability

σ̄C1 (x) = 1− πC0 (x)
(π̄C)n , (6)

and πC1 (x) =
(
π̄C
)n

. From stage 2, period t = 1 to stage 2, period t = n, Challenger and
Defender concede with total probabilities σ̄it (x) = 1 − π̄i, i ∈ {C,D} and beliefs evolve
according to (5).

3. Thereafter, normal Challenger and Defender concede with probability 1 and, if player i ∈
{C,D} does not concede, πit (x) = 1.

We give the full proof of Proposition 1 and further details about its intuition in Ap-
pendix A.2. Here we offer only the basic thrust behind its logic to show how negotiation
and conflict are linked.

First, notice that equilibrium beliefs are derived from the equilibrium strategies and
the initial post-negotiation beliefs

(
πC0 (x) , πD0 (x)

)
using Bayes’ rule:

πit (x) = πit−1 (x)
1− σ̄it (x) , for all i ∈ {C,D} , t ∈ {1, 2, . . . }
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We can now turn to why the equilibrium strategies are optimal given beliefs. Intuitively,
normal players weigh the costs and benefits of protracting conflict to the next period. On
the one hand, refusing to concede may lead to further losses. On the other hand, it opens
up the possibility that the opponent will concede.

When Defender is more intimidating, Challenger’s (Defender’s) total probability of
concession σ̄C (x) = 1 − π̄C (σ̄D (x) = 1 − π̄D) is such that normal Defender (Challenger)
is indifferent between conceding and resisting (attacking).9 After each time Challenger
attacks, Defender raises his belief that Challenger is tough. Similarly, after each time De-
fender resists, Challenger raises her belief that Defender is tough. This is compatible with
a constant total probability of concession because normal Challenger (Defender) increases
the probability of concession over time according to:

σit (x) = 1− π̄i
1− πit−1 (x) , for all i ∈ {C,D} , t ∈ {2, . . . , n} . (7)

After n periods, πDn (x) > π̄D (while πCn (x) = π̄C) so that, by Lemma 1, Challenger strictly
prefers to concede in period n+ 1.

When Challenger is more intimidating, the equilibrium is slightly different because in
period 1 Defender concedes with a higher probability. Therefore, in period 1 Challenger
strictly prefers to attack. Thereafter play proceeds as when Defender is more intimidating,
but now πCn+1 (x) > πC (while πDn (x) = π̄D) so that, by Lemma 1, Defender strictly prefers
to concede in period n+ 1.

We now give an intuitive explanation for why normal Challenger mixes between at-
tacking and conceding in any period t > 1 in which πDt−1 (x) ≤ π̄D. Suppose that normal
Challenger concedes with certainty in period t. By Bayes’ rule, normal Defender is then
so intimidated by an attack that he would concede immediately after it. But then normal
Challenger strictly prefers to attack and receive the whole resource rather than avoiding
the loss LC . If instead she attacks with certainty in equilibrium, then Defender’s belief
that Challenger is tough after the attack, πDt+1 (x), equals πDt (x), and therefore his propen-
sity to concede does not change from period t−1 to t. But then normal Challenger strictly
prefers to concede as attacking brings no benefits while she incurs the loss LC . A similar
logic explains why normal Defender also mixes between resisting and conceding in any
period t > 1 in which πCt (x) ≤ π̄C .

The key difference between the two cases in Proposition 1 is that when Challenger is
more intimidating, she attacks with probability 1 at the start, whereas she mixes when

9See Lemma 4 in Appendix A.2.
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Defender is more intimidating.10 That is, when Challenger is perceived to be more likely
to be tough, her expected equilibrium payoff from conflict is greater. In fact, when De-
fender is more intimidating, in period 1 Challenger is indifferent between attacking and
conceding—payoff equals 0. Instead, when she is more intimidating, Challenger strictly
prefers to attack.

Remark 1. If at the beginning of conflict Challenger is more intimidating, then normal
Challenger’s expected payoff uC

(
πC0 (x) , πD0 (x)

)
is given by

uC
(
πC0 (x) , πD0 (x)

)
=
(

1− πD0 (x)
(π̄D)n

)
− LC (8)

and normal Defender’s expected payoff is −LD. The unconditional probability of an at-
tack in period t ∈ {2, . . . , n+ 1} is given by

Pr (attack at t) = πD0 (x)
(π̄D)n

(
π̄C
)t−1 (

π̄D
)t−2

.

Remark 2. If at the beginning of conflict Defender is more intimidating, then normal Chal-
lenger’s expected payoff is 0 and normal Defender’s expected payoff uD

(
πC0 (x) , πD0 (x)

)
is given by

uD
(
πC0 (x) , πD0 (x)

)
=
(

1− πC0 (x)
(π̄C)n

)
− πC0 (x)

(π̄C)n L
D. (9)

The unconditional probability of an attack in period t ∈ {1, . . . , n} is given by

Pr (attack at t) = πC0 (x)
(π̄C)n

(
π̄C π̄D

)t−1
.

4.1 Comparative statics of conflict

We now provide some comparative statics of the conflict phase and link them to empirical
regularities.

As in Abreu and Gul (2000), the conflict horizon is finite and it is shorter when players
are believed to be tough with greater probability.

Corollary 1. Unless both players are tough, the maximum length of a conflict is determined by
the conflict horizon n. If Challenger is more intimidating, normal Challenger does not attack after
period n+ 1. If Defender is more intimidating, normal Challenger does not attack after period n.

10In reputation models, asymmetries in prior probabilities for being tough are leveled up by adjusting
initial concession rates (see Abreu and Gul, 2000; and Özyurt, 2014 for a continuous-time version of this
result).
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The next result determines the probability that a conflict that has lasted until period
t, 1 < t ≤ n survives to period t + 1. This probability is independent of which player is
more intimidating, how much the players are likely to be tough, or the period t. That is,
the hazard rate of the conflict depends only on the threshold values π̄C and π̄D, which do
not depend on the initial beliefs, πC0 (x) and πD0 (x), or on t. Thus, until period t = n is
reached, conflict is non-duration dependent.

Corollary 2. In each period t : 1 < t ≤ n, if conflict has not yet ended, Challenger attacks with
constant probability π̄C and Defender resists with constant probability π̄D. Therefore, if conflict
has not yet ended by the end of period t− 1, the probability that conflict will not end by the end of
period t equals π̄C π̄D.

The non-duration dependence of conflict is driven by the reputational nature of our
model of conflict. In fact, as we noted in the introduction, in models of bargaining with
reputation (e.g., Abreu and Gul, 2000; Özyurt, 2014), the conditional probability that bar-
gaining continues is constant in time. Notice that as πC0 (x) and πD0 (x) become small, n
grows and the length of conflict (conditional on there being a conflict at the end of period
1) is therefore approximated by a geometric distribution with hazard rate π̄C π̄D.

Although the probability that conflict extends to the next period does not depend
on time, it nonetheless depends in intuitive ways on other primitives of the model, in
particular on the players’ costs of fighting. Thus conflict duration is determined by the
opponents’ military capabilities, rather than their ability to intimidate.

Corollary 3. Conditional on there being a conflict at time t > 1, the probability of an attack in
period t′ > t is decreasing in the cost of fighting (LC and LD).

For πC0 (x) and πD0 (x) sufficiently small, such that conflict length is approximated by
a geometric distribution, the same comparative statics apply to the expected length of
conflict. Furthermore, our normalization of the value of the resource to 1 does not allow
us to derive explicit comparative statics with respect to it. Nonetheless, it is easy to show
that if the value of the resource is given by V ′, then the probability of an attack in period
t′ is increasing in V ′.

The evidence concerning the effect of institutional characteristics on the duration of
conflict is ambiguous. On the one hand, Bennet and Stam (2009), Langlois and Langlois
(2009), and Henderson and Bayer (2013) find that the relation between democracy and
conflict duration is not significant once the military capabilities of the parties and the
physical characteristics of conflict (common boundaries, terrain, etc.) are taken into ac-
count. On the other hand, models of co-determination of war duration and outcome find
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that wars that are initiated by democracies are shorter (Bennet and Stam, 1998; Clark and
Reed, 2003; Slantchev, 2004).11 Our results suggest that that the probability of continua-
tion of conflict depends indeed only on the costs and benefits of war, and only to a lesser
extent on the probability of being tough. Thus, in our model physical and technological
characteristics matter more than political ones.

We now turn to the question of when an armed conflict is more likely to begin, i.e. there
is a first attack if there is no chance to negotiate. The following corollary describes how
this probability depends on the public beliefs that the players are tough.

Corollary 4. Fix the likelihood πD0 (x) that Defender is tough. The probability that Challenger
begins to attack is increasing in the belief that Challenger is tough πC0 (x). It is strictly increasing
if and only if Defender is more intimidating than Challenger.

For Defender, an image of toughness can pay: if Defender is more intimidating than
Challenger, then the probability of a first attack is strictly less than 1. In this case, the
probability of a first attack is πC0 (x) /

(
π̄C
)n

, where n is the largest natural number such

that πD ≤
(
π̄D
)n

. Thus, if πD0 (x) increases, the probability of a first attack decreases.

Corollary 5. Let Defender be more intimidating than Challenger. Then, the probability that
Challenger begins to attack is decreasing in πD0 (x).

Nonetheless, the advantage of being perceived as tough should not be overstated.
After the first attack is carried out, Challenger levels the playing field with Defender and
the expected payoff for Defender is−LC , independently of πD0 (x). Indeed, in equilibrium,
Defender is indifferent between conceding and resisting whenever he plays.

One of the few empirical regularities about conflict is that pairs of democracies are less
likely to fight each other.12 Our results suggest that violence begins when there is greater
imbalance between the parties’ probability of being tough. We argue that democratic
leaders are kept in check by their citizens and that therefore democracies tend to have
similar probabilities of being tough or irrational. On the contrary, autocrats of the like
of Kim Jung-un are known for their unpredictable behavior. Thus, a pair of autocracies
or one democracy and one autocracy are more likely to have unbalanced probabilities of
being tough and are therefore more likely to engage in conflict.

11Lyall (2010) finds that democracies fight longer wars in a sample of 286 counterinsurgency wars.
12See Bueno de Mesquita and Smith (2012) for a survey.
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5 Why negotiations fail to eliminate conflict

We now turn to the negotiation phase of our model to show why conflict may be unavoid-
able even if Defender and Challenger can commit to a peaceful division of the resource.
An important feature of our model is that negotiation and conflict are linked: actions
taken during negotiation affect public beliefs at the onset of conflict. These beliefs, in
turn, determine the expected payoff from conflict, affecting the relative appeal of nego-
tiating peace. In this section we show that this link between negotiation and conflict
induces Defender to make an offer that is rejected with strictly positive probability by
normal Challenger.

5.1 Preliminaries

We begin by showing how more generous offers, which are accepted by Challenger with
greater probability, also make conflict more valuable to Challenger.

By Remarks 1 and 2, if post-negotiation beliefs are such that Challenger is more intim-
idating, then normal Challenger’s expected payoff of conflict uC

(
πC0 (x) , πD0 (x)

)
is given

by σ̄D1 (x)− LC , where

σ̄D1 (x) = 1− πD0 (x)
(π̄D)n ;

otherwise uC
(
πC0 (x) , πD0 (x)

)
= 0.

We move a step back and study the continuation game beginning just after Defender
makes any offer x. Recall that α (x) is the probability that normal Challenger accepts
offer x, so that ᾱ (x) =

(
1− πC

)
α (x) is her total probability of acceptance. Then, in any

continuation equilibrium, πC0 (x) is determined by ᾱ (x) using Bayes’ rule:13

πC0 (x) = πC

1− ᾱ (x) . (10)

Therefore, an offer x that is accepted with a greater probability ᾱ (x) implies a higher
public belief πC0 (x) that Challenger is tough if x is rejected and conflict begins.

For a given post-negotiation belief πD0 that Defender is tough, increasing Defender’s
post-negotiation belief that Challenger is tough from πC0 to π′C0 increases normal Chal-
lenger’s expected payoff from conflict in one of two ways. First, if

(
πC0 , π

D
0

)
is such

13By Property 1 in Definition 3.1 in Fudenberg and Tirole (1991), belief πC0 (x) must be derived from πC

and α (x) by Bayes’ rule, even if the equilibrium of the whole game assigns probability zero to the offer x.
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that Defender is more intimidating, the change to π′C0 may induce a conflict where Chal-
lenger is more intimidating, thereby increasing Challenger’s expected payoff from 0 to
σ̄D1 (x) − LC > 0. Second, if

(
πC0 , π

D
0

)
is such that Defender is more intimidating, the

increase to π′C0 induces a (weakly) greater probability σ̄D1 (x) that Defender concedes in
period 1, because the conflict horizon n is (weakly) decreasing in πC0 (x). This immedi-
ately gives the following.

Remark 3. Let x and x′ be two offers and fix the post-negotiation belief πD0 that Defender is
tough. In any equilibrium, for any acceptance strategy for Challenger α, if α (x) > α (x′),
then uC

(
πC0 (x) , πD0

)
≥ uC

(
πC0 (x′) , πD0

)
.

We can now study the first move in our game: Defender chooses an offer. Our equi-
librium concept implies that Defender’s offer cannot signal what he does not know (Fu-
denberg and Tirole, 1991).14 Therefore, πD0 (x) = πD for all offers x ∈ [0, 1].

We consider two extreme offers that Defender may choose to make. At one extreme,
Defender may choose an offer x so meager that Challenger would surely reject: ᾱ (x) = 0.
By Bayes’ rule, then conflict begins with πC0 (x) = πC . But for Challenger to reject x, then
x must not exceed normal Challenger’s expected payoff from conflict, uC

(
πC , πD

)
. Thus,

the maximum offer that Challenger could surely reject is x = uC
(
πC , πD

)
. Furthermore,

suppose that Challenger were to accept an offer x < x with strictly positive probability.
By Bayes’ rule, conflict would begin with belief πC0 (x) > πC . But then Challenger would
strictly prefer to reject x as, by Remark 3, uC

(
πC0 (x) , πD0

)
≥ uC

(
πC , πD0

)
= x > x. This

immediately gives the following.

Remark 4. In any equilibrium, normal Challenger surely rejects all offers x < x = uC
(
πC , πD

)
and accepts with strictly positive probability all offers x > x.

At the other extreme, Defender may choose an offer x so generous that normal Chal-
lenger would surely accept: ᾱ (x) = 1 − πC . By Bayes’ rule, if the offer is rejected then
conflict begins with πC0 (x) = 1. But for normal Challenger to accept x, then x must be no
less than normal Challenger’s expected payoff from conflict, uC

(
1, πD

)
. Thus, the mini-

mum offer that Challenger would surely accept is x̄ = uC
(
1, πD

)
. Furthermore, suppose

that normal Challenger were to reject an offer x > x̄ with strictly positive probability.
By Bayes’ rule, conflict would begin with belief πC0 (x) < 1. But then normal Challenger

14Properties 2 and 3 in Definition 3.1. Formally, Fudenberg and Tirole’s (1991) definition applies to
“multi-stage games with observed actions.” In particular, each player is informed about his or her type at
the start of the game. In our benchmark model Defender does not know his own type when making offers.
Nonetheless, the definition still applies if we interpret our game as a game with three players: uninformed
Defender, informed Defender, and Challenger. The offer is made by uninformed Defender, whose payoff
equals the expected payoff of informed Defender.
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would strictly prefer to accept x as, by Remark 3, uC
(
πC0 (x) , πD

)
≤ uC

(
1, πD

)
= x̄ < x.

This immediately gives the following.

Remark 5. In any equilibrium, normal Challenger surely accepts all offers x > x̄ = uC
(
1, πD

)
and rejects with strictly positive probability all offers x < x̄.

5.2 Equilibrium

Proposition 2 says that Defender’s equilibrium offer is bounded by the extreme offers
x and x̄. The equilibrium offer is neither surely rejected nor surely accepted by normal
Challenger; in fact, Challenger mixes in response to off-path offers that are neither below
x nor above x̄. Obviously, normal Challenger’s expected payoff from conflict must then
be strictly positive. By Remarks 1 and 2, this happens if and only if public beliefs at the
beginning of conflict (and therefore after negotiation has failed) are such that rejecting an
offer induces equilibrium beliefs where Challenger is more intimidating.

Proposition 2. For any ∆ sufficiently small, any equilibrium features a pair (x∆, α∆) such that:

1. Defender makes an offer x∆ ∈ [x, x̄], where x = uC
(
πC , πD

)
and x̄ = uC

(
1, πD

)
.

2. Normal Challenger accepts offer x with probability α∆ (x) such that α∆ (x∆) ∈ (0, 1) and

α∆ (x)



= 0 if x < x;

∈ [0, 1) if x = x;

∈ (0, 1) if x ∈ (x, x) ;

∈ (0, 1] if x = x̄;

= 1 if x > x̄.

3. Post-negotiation beliefs are determined by

πC0 (x) = πC

1− (1− πC)α∆ (x) ;

πD0 (x) = πD.

4. For any x ∈ [x, x̄], if α∆ (x) > 0, then there exists n ∈ N such that
(
π̄C
)n+1

≤ πC0 (x) <(
π̄C
)n

and πD0 (x) = πD <
(
π̄D
)n+1

.

Furthermore, for every sequence of ∆ going to zero, every sequence of equilibrium pairs (x∆, α∆ (x∆))
converges to the same limit (x∗, α∗) ∈ (0, 1)2.
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To prove Proposition 2, we first study Defender’s choice of an offer when Challenger
is more intimidating if conflict were to begin with pre-negotiation beliefs

(
πC , πD

)
. If an

offer x is then made and rejected, post-negotiation beliefs are such that πC0 (x) ≥ πC and
πD0 (x) = πD. Therefore, every continuation conflict game begins with Challenger being
more intimidating. By Remark 1, Challenger accepts an offer x with positive probability
only if15

x ≥ uC
(
πC0 (x) , πD

)
=
(

1− πD

(π̄D)n
)
−
(
1− e−r∆

)
`C . (11)

Let UD
∆ (x, ᾱ (x)) denote uninformed Defender’s expected payoff from making an offer x

that is accepted with total probability ᾱ (x):

UD
∆ (x, ᾱ (x)) := ᾱ (x) (1− x) + (1− ᾱ (x))

{
πD −

(
1− πD

) (
1− e−r∆

)
`D
}
. (12)

The factor multiplying 1 − ᾱ (x) in the second term shows that the Defender correctly
anticipates that, if negotiation fails, he will be tough with probability πD (and get the full
utility of the resource) and with the remainder probability he will be normal (and get no
utility from the resource if conflict begins). An offer x∗∆ is optimal if it maximizes (12)
subject to (11) and (10). Since there is no point for Defender to offer more than what
normal Challenger would accept, the first constraint binds.

Thus far we have considered our benchmark model with ∆ > 0. In the remainder of
this section we derive the limit of optimal offers as ∆ approaches zero, when it is easier to
quantify the intuition. Appendix A.3 uses a continuity argument to guarantee the result
for all ∆ sufficiently small. The limit of Defender’s payoff as ∆ ↓ 0 is given by

UD (x, ᾱ (x)) = ᾱ (x) (1− x) + (1− ᾱ (x))πD. (13)

The limit of Challenger’s payoff as ∆ ↓ 0 is given by the following lemma.

Lemma 2. Assume that Challenger is more intimidating if conflict begins with beliefs
(
πC , πD

)
.

Then lim∆↓0 u
C
(
πC0 (x) , πD

)
= UC

(
πC0 (x) , πD

)
:= 1− πD

(
πC0 (x)

) `C

1−`D .

Proof. In Appendix A.3.

Therefore, in the limit as ∆ ↓ 0, Defender’s problem reduces to

15Recall from Proposition 1 that σ̄D1 (x) = 1 − πD0 (x) /
(
π̄D
)n in any continuation equilibrium and Li ≡(

1− e−r∆) `i , i ∈ {C,D}.
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max
(x,ᾱ)∈[0,1]×[0,1−πC ]

UD (x, ᾱ) s.t. x = UC
(
πC0 (x) , πD

)
and πC0 (x) = πC

1− ᾱ

Using Lemma 2 and the second constraint, we can write x as a function of ᾱ ∈
[
0, 1− πC

]
and, after substituting this expression in UD we have a maximization problem in one
variable, ᾱ. The first-order condition is:

dUD

dᾱ
= πD

(
πC

1− ᾱ

) `C

1−`D

− ᾱ dx
dᾱ
− πD = 0. (14)

Substituting

dx

dᾱ
= −πD

(
πC

1− ᾱ

) `C

1−`D 1
1− ᾱ

`C

1− `D .

into (14) yields

1
πD

dUD

dᾱ
=
(

πC

1− ᾱ

) `C

1−`D
(

1 + ᾱ

1− ᾱ
`C

1− `D

)
− 1 = 0. (15)

It is easy to see that dUD/dᾱ is strictly positive at ᾱ = 0, strictly negative at ᾱ = 1 − πC ,
and UD is single-peaked over its domain. This implies that the function UD attains a
maximum at a unique interior value ᾱ ∈

(
0, 1− πC

)
, which corresponds to a unique

value x∗ since ᾱ is strictly increasing in x whenever ᾱ ∈
(
0, 1− πC

)
. Therefore, when

Challenger is more intimidating if conflict were to begin with beliefs
(
πC , πD

)
, Defender’s

optimal offer is rejected with strictly positive probability by normal Challenger.

We now turn to the case when Defender is more intimidating if conflict were to begin
with beliefs

(
πC , πD

)
: there exists m ∈ N such that

(
π̄D
)m+1

< πD <
(
π̄D
)m

and πC <(
π̄C
)m

. We rule out by contradiction the following possibility: Defender makes an offer
that is accepted with so small a probability that, even if Challenger rejects it, the resulting
post-negotiation beliefs still induce a conflict in which Defender is more intimidating.
Suppose that Defender makes such an offer x. Then (10) implies that

πC0 (x) = πC

1− ᾱ (x) <
(
π̄C
)m

. (16)

Since (16) implies ᾱ (x) < 1 − πC , normal Challenger must reject x with strictly positive
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probability.16 From the point of view of normal Challenger, though, accepting such an
offer gives a payoff of x > 0. Instead, rejecting it induces a conflict with Defender being
more intimidating, and thus gives an expected payoff of 0. Therefore, normal Challenger
prefers to accept this offer with certainty, contradicting ᾱ (x) < 1− πC . Therefore, even if
Defender is more intimidating before negotiation begins, Challenger must be more intim-
idating after negotiations fail. The optimal offer must then satisfy the first-order condition
in (14), and the rest of the logic is unchanged. Hence, Defender’s optimal offer is rejected
with strictly positive probability by normal Challenger.

6 Brinkmanship (multiple offers)

Previous sections established why a single round of negotiation may fail to avoid conflict.
But with multiple rounds, Defender could potentially ‘screen’ Challenger, i.e., take out a
proportion of normal types at each round, lowering the probability of conflict, which
could conceivably go to 0 as the number of rounds increases. We now show that this is
not in fact the case: our results on the failure of negotiation are robust to an arbitrary
number of offers.

The model is modified as follows to accommodate K rounds of negotiation. At each
round k = − (K − 1) , . . . ,−1, 0, Defender can offer any fraction of the resource to Chal-
lenger. The conflict phase is triggered if all K offers are rejected. Defender learns his type
only if conflict starts and Challenger attacks, while Challenger knows her type through-
out. Decision histories extend the benchmark model in a straightforward way. A decision
history in the negotiation phase is uniquely identified by a vector of offers and the player
who moves. If the player who moves is Defender, then the action chosen is another offer;
if it is Challenger, it is acceptance or rejection of the last offer in the sequence. A deci-
sion history in the conflict phase is uniquely identified by the vector of rejected offers,
the number of periods of conflict that have elapsed, and the identity of the player whose
moves.

Notice that Defender can still attain the same expected payoff he would get with only
one round of negotiation. In fact, he can choose to make offers that no Challenger would
accept until the last round (k = 0), and then make the same offer he would make with
one-round negotiation. Therefore, the question is whether or not Defender can do better
than this by making an acceptable offer before the last round of negotiation. Proposition 3

16As we have argued before, if normal Challenger accepts with certainty (ᾱ (x) = 1−πC) then a rejection
forces Defender to conclude that Challenger is tough with certainty (πC0 (x) = 1 >

(
π̄C
)m for any m ∈ N).

21



says that the answer to this question is negative: in equilibrium offers are accepted with
vanishingly small probability except on the brink of conflict.

Proposition 3. For any ∆ > 0, let ᾱ∗k(∆), k = − (K − 1) , . . . ,−1, 0 be the equilibrium proba-
bility that Challenger accepts the offer in round k of the game with K rounds of negotiation. Let
ᾱ∗ ∈

(
0, 1− πC

)
be the solution to the first-order condition (15). For any sequence of ∆ going to

zero, every sequence
(
ᾱ∗−(K−1) (∆) , . . . , ᾱ∗−1 (∆) , ᾱ∗0 (∆)

)
converges to (0, . . . , 0, ᾱ∗).

The proof in Appendix A.4 explicitly allows for varying non-negative intervals of time
between rounds of negotiation, and thus implies the above result with all intervals being
equal to ∆.

Once again, the intuition behind our brinkmanship result lies in the ability of Chal-
lenger to intimidate Defender—in this case, into making larger offers in the future. To
illustrate this intuition, we focus here on the simple case of K = 2 as ∆ goes to 0 (in
Appendix A.4 we show how the intuition goes through for ∆ > 0). Let x∗ be the opti-
mal offer in our limiting benchmark model. Notice that if an agreement is not reached
in the first round, then the continuation game is identical to our benchmark model. Yet,
Defender’s belief that Challenger is tough when the last round comes along may have
been affected by actions taken in the previous round. Suppose that, in the first round,
Defender makes an offer that Challenger accepts with probability ᾱ′ > 0. If Challenger
rejects, then Defender’s belief that Challenger is tough rises to

πC′ = πC

1− ᾱ′ > πC .

But then, when the second and last round comes along, Defender would make an offer
larger than x∗. Since Challenger must be indifferent between accepting the first and the
second offer, then the earlier offer too must be larger than x∗. Thus, the cost for Defender
of buying Challenger’s agreement is the same in the two rounds and it is greater than
x∗—the cost it pays when there is only one round of negotiation. Since Defender can
always attain the same expected payoff he would get if there was only one round of
negotiation (for example by making a zero offer in all rounds until the final one), making
an acceptable offer in the first round is not optimal for him.

7 Negotiating during conflict, and informed Defender

Our benchmark model makes a stark distinction between the actions available to the par-
ties before and after conflict begins: before conflict begins, the parties can negotiate a
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peace that involves sharing the resource between them; after conflict begins, they can
only concede the whole resource. This is arguably realistic. As noted by Langlois and
Langlois (2009), negotiations during conflict between states are uncommon. For example,
Pillar (1983) finds that in only nineteen of one-hundred and forty two interstate wars par-
ties negotiated during conflict and before an armistice. However, there are situations in
which negotiations may happen after conflict begins. We now discuss a variant of the
model in which Defender can make any offer to share the resource to Challenger in any
period t ∈ {1, 2, . . . }. Since Defender learns his type once conflict begins, this variant of
the model also features offers from an informed Defender. The main message is that nei-
ther the possibility of negotiating during conflict nor Defender being informed at the time
he makes an offer change our main result: initial negotiations fail with strictly positive
probability and the ensuing conflict is prolonged.

Consider the following variation of our model. The only difference with our bench-
mark model is that if Challenger rejects the (initial) negotiation offer x, the following
three-stage game is played at each period t ∈ N :

Stage 1: Challenger attacks with certainty unless she has previously accepted an offer;

Stage 2: Defender makes an offer yt ∈ [0, 1];

Stage 3: Challenger chooses whether to accept or reject the offer. If she accepts, the
game ends and Challenger and Defender enjoy flow rents yt and (1− yt), re-
spectively, thereafter. If she rejects, the game moves to the next period.

As before, Defender learns his own type immediately after the first attack by Challenger.

Implicit in our model is the assumption that Challenger’s decision to reject an offer
and continue the conflict is taken at the end of a period rather than at the beginning of
the next.17 This makes this model readily comparable to our benchmark, where, after
Challenger attacks, Defender can choose to concede the whole resource, in which case
the transfer happens immediately. Similarly here, after Challenger attacks, Defender can
choose to concede a fraction of the resource. If Challenger accepts, then the transfer hap-
pens immediately.

Let Hi
t denote the set of all possible histories at which player i ∈ {C,D} moves in

period t. A history hCt ∈ HC
t comprises a rejected initial offer x, t − 1 rejected offers ys,

s = 1, . . . , t − 1, and the offer yt Defender has made in period t. A history hDt ∈ HD
t

17This is why Challenger attacks with certainty at stage 1 after rejecting an offer in the previous period:
accepting an offer strictly dominates rejecting the same offer and then conceding in the next period.
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comprises a rejected initial offer x, and t − 1 rejected offers ys, s = 1, . . . , t − 1. Thus any
history hit ∈ Hi

t at which player imoves is uniquely identified by the period t and a vector
of offers—yt = (x, y1, . . . , yt), if i = C; yt−1, if i = D. Let πDt (yt) denote Challenger’s belief
that Defender is tough at the history comprising offers yt at which Challenger moves in
period t. Furthermore, let πCt

(
yt−1

)
denote Defender’s belief that Challenger is tough

when Defender moves in period t.

Since Defender is informed about her type at the moment she makes an offer in period
t ≥ 1, then making a strictly positive offer reveals that he is normal. Here we focus on
equilibria satisfying the following ‘degeneracy’ property: if Defender is publicly known
to be normal and Challenger is publicly believed to be tough with strictly positive prob-
ability, then Defender offers the whole resource. Arguments mirroring those in the repu-
tational bargaining literature (Abreu and Gul, 2000) show that all equilibria must exhibit
degeneracy as ∆ goes to zero. When ∆ is sufficiently small, any equilibrium of the entire
game with the degeneracy property is of the form below.

(Initial) negotiation fails. Defender makes an initial offer that is both accepted and re-
jected by normal Challenger with strictly positive probability. Therefore, conflict begins
with probability strictly greater than πC , but strictly smaller than 1.

If negotiation fails, conflict begins with Challenger being more intimidating.

Conflict. There is a threshold level π′C < π̄C such that in the continuation game of con-
flict:

1. if 0 < πDt
(
yt−1

)
≤ π̄D and 0 < πCt−1

(
yt−1

)
≤ π′C , normal Defender mixes between

offering yt = δπ̄D and yt = 0; normal Challenger accepts any offer yt ≥ δπ̄D with
certainty; mixes between accepting and rejecting yt = 0; and rejects yt ∈

(
0, δπ̄D

)
with certainty.

2. If 0 < πDt
(
yt−1

)
≤ π̄D and π′C < πCt−1

(
yt−1

)
< π̄C , normal Defender mixes between

offering yt = 1 and yt = 0; normal Challenger accepts any offer yt ≥ δπ̄D with
certainty; mixes between accepting and rejecting yt = 0; and rejects yt ∈

(
0, δπ̄D

)
with certainty.

3. If πCt−1

(
yt−1

)
> π̄C , normal Defender offers yt = 1.

4. If πDt−1

(
yt−1

)
> π̄D, normal Challenger accepts zero offers.
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5. Beliefs are updated using Bayes’ rule and equilibrium strategies as in our bench-
mark model.

The logic behind this equilibrium follows that in our benchmark model. Challenger’s
(Defender’s) total probability of acceptance (making a strictly positive offer) is such that
normal Defender (Challenger) is indifferent between making a strictly positive offer and
offering nothing (accepting and rejecting). After each time Challenger rejects, Defender
raises his belief that Challenger is tough. Similarly, after each time Defender offers noth-
ing, Challenger raises her belief that Defender is tough. This model differs from the
benchmark one because it allows non-zero offers short of everything. Such an offer re-
veals immediately that Defender is normal, and thus will not be accepted unless it is so
generous that Challenger would rather not reject it, attack once, and force Defender to
offer the whole resource in the next period. This latter option gives δ

(
1− LC

)
= δπ̄D.18

Anything below δπ̄D is counterproductive (because it will invite an extra attack before De-
fender anyway concedes), and anything higher than this is unnecessary if the Defender
puts reasonably high probability that Challenger is normal and will accept it; this leads
to point 1 above. If Challenger is more likely to be tough, but still less than the threshold
π̄C , Defender prefers to end conflict with both normal and tough Challenger if he is going
to reveal that he is normal; this leads to point 2 above.

It remains to explicitly calculate π′C , the belief at which Defender’s offer switches from
δπ̄D to 1. If Defender offers δπ̄D, with probability 1−πCt−1

(
yt−1

)
Challenger is normal and

will accept; otherwise, Challenger is tough and Defender will concede the whole resource
with certainty after incurring an additional attack. Therefore Defender’s expected payoff
equals (

1− πCt−1

(
yt−1

)) (
1− δπ̄D

)
+ πCt−1

(
yt−1

) (
V − δLD

)
.

Offering the whole resource right away gives Defender the certainty to avoid any further
conflict and a payoff of 0. So Defender prefers to offer δπ̄D rather than the entire resource
only if

πCt−1

(
yt−1

)
<

(
1− δπ̄D

)
(1− δπ̄D) + (δLD − V ) =: π′C < 1.

We now turn to the question of why pre-conflict negotiation fails with strictly positive
probability when ∆ is sufficiently small. Notice that δπ̄D ↑ 1 as ∆ ↓ 0. That is, as ∆ ap-
proaches 0, the equilibrium of the conflict phase in this version of the model approaches
the equilibrium of our benchmark model. Therefore, Challenger’s and Defender’s ex-

18Recall that V =
(
1− e−r∆) = 1− δ. Therefore δ

(
V

1−δ − L
C
)

= δ
(
1− LC

)
.
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pected payoffs from conflict also approach their value in our benchmark model. It fol-
lows that, in the limit as ∆ approaches 0, the equilibrium of the whole game (inclusive of
pre-conflict negotiation) converges to that in our benchmark model. As for Proposition 2,
a continuity argument works for any ∆ > 0 sufficiently small.

8 Discussion

We have seen how negotiations and conflict are linked by a two-way feedback. On the
one hand, when choosing how to negotiate, the parties to a dispute take into account how
they expect an eventual conflict to unfold. On the other hand, the way conflict unfolds is
also determined by how and why negotiations fail. Our model of this two-way feedback
between negotiations and conflict uncovers a novel reason why negotiations may fail to
avoid conflict: offers that have a higher probability of being accepted also increase the
incentive for the aggressor to initiate conflict. Thus, negotiations can mitigate but not
prevent conflict. This result should not be seen as a claim that negotiations are useless:
a neutral observer who seeks to reduce conflict will gain from bringing the parties to the
negotiation table. If negotiations succeed, then conflict is avoided; if they fail, conflict will
be shorter. In fact, in our model, the result of failed negotiations is to increase the belief
πC0 that Challenger is tough, and therefore decrease the conflict horizon n. Furthermore,
the ability to negotiate increases the expected payoff of both players.

One possible caveat to our results is that we do not give Defender a chance to af-
ford peace with a tough Challenger unless he offers the entire resource to Challenger. In
many realistic applications, even a committed Challenger would admit that before con-
flict ensues she is willing to accept a smaller offer X < 1. Nevertheless, such a scenario
would not change the main insight from our model unless X is sufficiently small. In fact,
suppose that X >

(
1− πD

)
V . As we discussed in Section 5, an offer equal or greater

to
(
1− πD

)
V would convince normal Challenger to accept for sure. We can then see

whether Defender would prefer to strike a deal only with normal Challenger or with
both normal and tough Challenger. In this case, as ∆ ↓ 0, Defender’s expected payoff of
offering N equals

1
r

[(
1− πC

)
(1−N) + πCπD

]
where N = lim∆↓0

(
1− πD

)
V . Instead, Defender’s expected payoff of offering X equals

(1−X) /r. Therefore, Defender prefers to strike a deal with only normal Challenger as
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long as
X >

(
1− πC

)
N + πC

(
1− πD

)
.

From Section 5, we know that if Defender prefers to strike a deal with only normal Chal-
lenger, then it strictly prefers to make an offer that normal Challenger both accepts and
rejects with strictly positive probability.

In our model, we also do not allow Challenger to offer peace deals. But our key in-
sight about the failure of negotiations is also true if both Defender and Challenger can
make offers. In fact, if normal Defender accepts the equilibrium offer for sure, then post-
negotiation beliefs would be such that normal Challenger would never attack (that is,
πD0 = 1). But then normal Defender would strictly prefer to reject such an offer. Similarly,
consider a variant of the model in which there are K rounds of two-step negotiations. At
each stage, Challenger makes a demand first. If Defender accepts the offer, the game ends;
otherwise, Defender makes an offer. If Challenger accepts the offer, the game ends; other-
wise, the game moves to the next round of negotiations (or to conflict, if the last round of
negotiations has already been reached). If Challenger ever demands less than unity, she
reveals herself to be the normal type and, in the ensuing game, Defender has no incen-
tive to concede anything to her and Challenger would never attack. Thus Challenger will
simply demand 1 at each round and Defender will refuse and make an unacceptably low
offer (say, zero) until the last round—this recovers our brinkmanship result.

Our brinkmanship result shows that there is little point in insisting on multiple rounds
of negotiations. If acceptable offers are to be made, they will only be made at the last op-
portunity to avert conflict. In a sense, neutral observers should take advantage of any ulti-
matum imposed by the parties, rather than pressuring them to have softer deadlines. An
interesting extension of our model would be to allow for there to be multiple commitment
types of Challenger, from softer ones that would accept all offers above a threshold less
than 1 to the toughest ones who would accept only x = 1. Even in this model, the forces
that lead to delay would be present, but an additional force would be at work—an unin-
formed Defender could potentially screen some of the softest types in the early rounds of
negotiations. Furthermore, the main insights from our model will still drive the analysis
if we were to allow softer types to strategically mimic the toughest ones.
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A Appendix

A.1 Proof of Lemma 1

Proof. (i) Assume that normal Defender concedes immediately after Challenger attacks
in period t + 1. That is σDt+1 (x) = 1. By Bayes’s rule, if Defender does not concede, then
πDt+1 (x) = 1. Therefore, normal Challenger would concede at t + 2. Then the expected
payoff of attacking in period t+ 1 equals

(
1− πDt (x)

) V

1− δ − L
C =

(
1− πDt (x)

)
− LC .

Since not attacking yields a payoff of 0, Challenger strictly prefers to attack if πDt (x) < π̄D,
is indifferent if πDt (x) = π̄D, and strictly prefers to concede if πDt (x) > π̄D.

(ii) Assume that normal Challenger concedes in period t + 1. That is, σt+1 (x) = 1.
By Bayes’s rule, if Challenger does not concede, then πCt+1 (x) = 1. Therefore, normal
Defender would concede at t+ 1. Then the expected payoff of resisting in period t equals

V + δ
[(

1− πCt (x)
) V

1− δ − π
C
t (x)LD

]
= (1− δ) + δ

[(
1− πCt (x)

)
− πCt (x)LD

]
.

Since resisting yields a payoff of 0, Defender strictly prefers to resist if πCt (x) < π̄C , is
indifferent if πCt (x) = π̄C , and strictly prefers to concede if πCt (x) > π̄C .

A.2 Equilibrium in the game of conflict (Proposition 1)

We now present a few lemmas that identify necessary conditions for equilibrium and
thereby pin down the unique one in the game of conflict.

We first ask if a normal player ever mimics the tough type. Lemma 3 says that only
Challenger in period 1 can mimic the tough type (i.e. attack) with probability 1.

Lemma 3. In any equilibrium, normal types of both players concede with strictly positive proba-
bility in all periods, except possibly Challenger in period 1.

Proof. The concession sequence 〈κi〉 i∈N of any strategy profile is a sequence in [0, 1], where
each odd (even) term is the probability that Challenger (respectively, Defender) concedes
at that time conditional on no player having conceded yet. A concession sequence arising
from an equilibrium profile is called an equilibrium concession sequence.
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Lemma 3 then says that in any equilibrium concession sequence, all terms (except
possibly the first) must be strictly positive.

Step 1. The proof is based on the key idea that if the string (κi, 0, κi+2) appears in an
equilibrium concession sequence and κi+2 > 0, then κi = 1: if the opponent is not conced-
ing in the interim the value of concession can only go down because the positive cost to
fighting strictly exceeds the flow utility derived from the resource; therefore concession
should have been strictly better at the step before.

Step 2. We now show that, along any concession sequence, adjacent terms cannot be
0. Let κi = 0 = κi+1; if κi+2 > 0, it would contradict Step 1. Induction implies that if
two adjacent terms of the concession sequence are 0, all subsequent terms are 0 too. But
since there is a positive probability of the tough type, it cannot be an equilibrium to never
concede, knowing that your opponent will not. Therefore, no equilibrium concession
sequence contains adjacent 0’s.

Step 3. Suppose κi = 0 for some i > 1. By Step 2, we must have κi+1 > 0; from Step 1 it
means that κi−1 = 1. If the player who is supposed to concede with probability 1 does not
do so, his/her reputation immediately jumps to 1 and the normal opponent must concede
immediately thereafter, i.e. κi = 1—a contradiction!

Lemma 4 characterizes the players’ strategies if they are indifferent for two consecu-
tive periods.

Lemma 4. If Challenger is indifferent between conceding at times t and t+ 1 in any equilibrium,
then normal Defender’s equilibrium concession probability and the public beliefs about him are

σDt (x) = σ̃D
(
πDt−1 (x)

)
:= 1− π̄D

1− πDt−1 (x) ; and πDt (x) = πDt−1 (x)
π̄D

(17)

respectively. Similarly, if Defender is indifferent between conceding at times t and t + 1 in any
equilibrium, then normal Challenger’s probability of conceding and the public beliefs about her
type are

σCt+1 (x) = σ̃C
(
πCt (x)

)
:= 1− π̄C

1− πCt (x) , and πCt+1 (x) = πCt (x)
π̄C

. (18)

Proof. Let V i
t :[0, 1] × [0, 1] → R be the mapping from public beliefs at a history at which

player i ∈ {C,D} moves in period t to the expected payoff of not conceding. For ease of
exposition, we drop the history qualifier x from beliefs such that πit (x) = πit.

Challenger is indifferent if and only if V C
t

(
πCt−1, π

D
t−1

)
= 0, which is the payoff of

Challenger from conceding. Suppose that Challenger is indifferent for two consecutive
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periods: V C
t

(
πCt−1, π

D
t−1

)
= V C

t+1

(
πCt , π

D
t

)
= 0. By Lemma 3, σCt+1 (x) 6= 1. Therefore

σ̄Dt (x) = 1− π̄D.

This corresponds to a strategy for Defender such that σDt (x) = σ̃D
(
πDt−1

)
in (17) if πDt−1 ≤

π̄C .

Defender is indifferent if and only if V D
t

(
πCt , π

D
t−1

)
= −LD, the payoff Defender gets

if he concedes.19 Suppose that Defender is indifferent for two consecutive periods (or is
indifferent at time t and concedes at time t + 1): V D

t+1

(
πCt+1, π

D
t

)
= −LD = V D

t

(
πCt , π

D
t−1

)
.

By Lemma 3, σDt (x) 6= 1. Therefore

σ̄Ct+1 (x) = 1− π̄C .

This corresponds to a strategy for Challenger such that σCt+1 (x) = σ̃C
(
π̄Ct
)

in (18) if πCt ≤
π̄C .

Remark 6. Challenger’s mixing probability at t = 1 need not equal σ̃C ; Defender’s mixing
at t = 1 can be different from σ̃D only if Challenger strictly prefers to attack at t = 1.

Combining Lemmas 3 and 4, in equilibrium both players concede with the probabil-
ities in Lemma 4 above, except possibly at t = 1. Beliefs evolve according to the above
lemma, except possibly at t = 1 and until they hit π̄C or π̄D.

Conflict continues as long as no player has conceded. If players mix, then beliefs about
their type increase until a threshold is crossed.

Lemma 5 says that if both beliefs are strictly below their threshold, no belief leaps
over the corresponding threshold at the next step without touching the corresponding
threshold exactly.

Lemma 5. In equilibrium (i) πDt (x) < π̄D and πCt+1 (x) < π̄C implies πDt+1 (x) ≤ π̄D ; (ii)
πCt (x) < π̄C and πDt (x) < π̄D implies πCt+1 (x) ≤ π̄D.

Proof. For ease of exposition, we drop the history qualifier x from beliefs and write πit in
place of πit (x).

We proceed by contradiction. Let πDt < π̄D, πCt+1 < π̄C but πDt+1 > π̄D. Lemma 1 implies
that normal Challenger will concede with probability 1 at time t+ 2 if Defender does not

19This payoff is not 0 but −LD because when it is Defender’s turn to decide if he wants to concede or
resist, Challenger has already attacked and the loss will be experienced by Defender in the current period
regardless of his choice of move.
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concede at t + 1. So if Defender does not concede at time t + 1 he gets a continuation
payoff of 1 from t+2 onward if Challenger is the normal type. Since Challenger is normal
with probability 1− πCt+1, Defender’s payoff from t+ 1 (the current period) onward is

(1− δ)
(
V − LD

)
+ δ

[(
1− πCt+1

)
V − πCt+1L

D (1− δ)
]
.

Defender strictly prefers to not concede if the above exceeds the payoff − (1− δ)LD from
conceding immediately at t+ 1:

(1− δ)V + δ
[(

1− πCt+1

)
V − πCt+1L

D (1− δ)
]
> 0. (19)

Inequality (19) reduces to πCt+1 < π̄C , which is true by assumption. Therefore Defender
strictly prefers to fight at t + 1, i.e. σDt+1 (x) = 0—this contradicts Lemma 3, implying that
πDt < π̄D and πCt+1 < π̄C cannot lead to πDt+1 > π̄D.

Now let πCt < π̄C and πDt < π̄D, but πCt+1 > π̄C . By a similar logic Challenger strictly
prefers to fight at t+ 1 if

− (1− δ)LC +
(
1− πDt

)
V > 0.

The expression above reduces to πDt < π̄D. So Challenger strictly prefers to fight at t + 1,
i.e. σCt+1 (x) = 0—this contradicts Lemma 3.

What do our previous results imply about period 1’s probability of attack? By Lemma
4, from period 2 onward beliefs must grow by a factor

(
π̄C
)−1

and
(
π̄D
)−1

, respectively.
The solid line in Figure 1 depicts the equilibrium evolution of beliefs in a conflict of hori-
zon 2 with Challenger being more intimidating. The dashed line represents the evolution
of beliefs if it is common knowledge that both Defender and Challenger play the strategies
in Lemma 4 from period 1 onward. In this case, πD1 (x) < π̄D and πC2 (x) > π̄C , violating
Lemma 5. In equilibrium, Defender must concede with sufficiently large probability in
period 1 so as to ‘level the playing field’ with Challenger and guarantee πD2 (x) = π̄D.
Since Defender is conceding with a higher probability than what would make Challenger
indifferent, in period 1 Challenger strictly prefers to attack.

Remark 7. If Challenger is more intimidating, in period 1 Challenger attacks with proba-
bility 1 and Defender concedes with probability 1− πD0 (x) /

(
π̄D
)n
> 1− π̄D.

A similar logic applies to the case when Defender is at least as committed as Chal-
lenger. In this case, Challenger must concede with sufficiently high probability in period
1 so as to ‘level the playing field’ with Defender and guarantee πCn = π̄C .
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(
π̄D
)2

πC0 = πC1

Figure 1: How Beliefs Evolve

Remark 8. If Defender is more intimidating, in period 1 Challenger attacks with probabil-
ity πC0 (x) /

(
π̄C
)n

.

The next lemma shows that along the equilibrium path, provided no one concedes,
both reputations grow according to (5) from period 2 onward, until a time t when either
πCt = π̄C or πDt = π̄D.

Lemma 6. For any period t ≥ 2, if πDt−1 (x) ≤ π̄D and πCt (x) ≤ π̄C , then Challenger plays
σ̃C

(
πCt (x)

)
and Defender plays σ̃D

(
πDt−1 (x)

)
.

Proof. We show the result for Defender. The result for Challenger follows a symmetric
argument.

Proceed by contradiction. If σDt (x) 6= σ̃D
(
πDt (x)

)
, by Lemma 4, Challenger is not

indifferent at either t or at t + 1. There are two possibilities. First, she strictly prefers to
concede. But then Defender would concede with probability 0 in the previous period,
contradicting Lemma 3. Second, she strictly prefers to fight. But then by Lemma 3 she is
Challenger in period 0 and t = 1 < 2.

The lemma above is useful in proving Proposition 1. We divide the proof in two cases:
when Challenger is more intimidating, and when Defender is more intimidating.
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A.2.1 Proof of Proposition 1 when Challenger is more intimidating

Proof. Let
(
π̄C
)n+1

< πC0 (x) <
(
π̄C
)n

and πD0 (x) <
(
π̄D
)n+1

for some n ∈ N.

Existence. We first show that the strategies defined in Proposition 1 constitute an
equilibrium. For ease of notation, we call this sequence of profiles of strategies σ∗t =(
σC∗t , σD∗t

)
, t ∈ N. From Lemma 4 it is clear that after the first move by Challenger in

period 1 players are indifferent and therefore willing to mix. Since normal players con-
cede in ∗ once the thresholds are crossed, this is consistent with Lemma 1. Since Defender
concedes with a larger probability than σ̃D in the first period, Lemma 4 implies that Chal-
lenger strictly prefers to fight at t = 1. Also note that by Bayes’ rule the equilibrium belief
about Challenger’s type after non-concession at t = 1 is given by

(
π̄C
)n

.

Uniqueness. If πC0 (x) ≥ π̄C , then Lemma 1 implies that the above is the only equilib-
rium; similarly for the case πD0 (x) ≥ π̄D. Therefore let

(
πC0 (x) , πD0 (x)

)
<
(
π̄C , π̄D

)
, so

that n ≥ 1. If normal types follow σ̃C , σ̃D defined in equations (18) and (17) up to and
including time n, then beliefs will cross their respective threshold in a way that violates
Lemma 5, since πC0 (x) /

(
π̄C
)n
> π̄C By Lemmas 4 and 6, the only freedom we have is in

choosing different strategies for t = 1.

By contradiction, suppose that Challenger concedes with positive probability in pe-
riod 1. This implies she expects Defender to concede with probability at least σ̃D. But this
implies that there ism ≤ n such that beliefs are

(
πCm+1 (x) , πDm (x)

)
with πCm+1 (x) > π̄C and

πDm (x) < π̄D, contradicting Lemma 5.

Last, since Challenger cannot concede with probability less than 0, we have πCn+1 (x) >
π̄C . Thus, by Lemma 5, Defender must concede in period 1 with probability exactly σD∗1 .

A.2.2 Proof of Proposition 1 when Defender is more intimidating

Proof. Let
(
π̄D
)n+1

< πD0 (x) <
(
π̄D
)n

and πC0 (x) <
(
π̄C
)n

for some n ∈ N.

Existence. Lemmas 1 and 4 imply that the strategy σ∗ defined in Proposition 1 consti-
tute an equilibrium. In particular, σC∗1 and Bayes’s rule imply that the equilibrium belief
about Challenger’s type after non-concession at t = 1 is given by

(
π̄C
)n

.

Uniqueness. If πC0 (x) ≥ π̄C , then Lemma 1 implies that the above is the only equilib-
rium; similarly for the case πD0 (x) ≥ π̄D. Therefore let

(
πC0 (x) , πD0 (x)

)
<
(
π̄C , π̄D

)
, so

that n ≥ 1. If normal types follow σ̃C , σ̃D defined in equations (18) and (17) up to and
including time n, then beliefs will cross their respective threshold in a way that violates
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Lemma 5, since πD0 (x) /
(
π̄D
)n

> π̄D. By Lemmas 4 and 6, the only freedom we have is
in choosing different strategies for t = 1.

Case 1: σC1 < σC∗1 . Suppose that σC1 < σC∗1 . The inequality σC1 < σC∗1 implies that Chal-
lenger’s reputation increases at a slower rate such that πCn (x) < π̄C . If σD1 < σ̃D1 ,
then Challenger prefers to concede immediately (σC1 = 1) since Challenger is just
indifferent at σ̃D; this contradiction implies that σD1 ≥ σ̃D, which in turn gives
πD1 (x) ≥ πD0 (x) /π̄D and therefore πDn (x) > π̄D. I.e. there exists m ≤ n such that
belief profile is

(
πCm (x) , πDm (x)

)
with πCm (x) < π̄C and πDm (x) > π̄D, contradicting

Lemma 5. Therefore, σC1 ≥ σC∗1 is the only possibility in equilibrium.

Case 2: σC1 > σC∗1 . Suppose that σC1 > σC∗1 . Now πC1 (x) > πC0 (x) /π̄C , πC2 (x) > πC0 (x) /
(
π̄C
)2

,
etc. Since Defender’s reputation is growing at rate 1/π̄D it follows from Defender
being more intimidating and

(
π̄C
)n+1

< πC0 (x) that πCn (x) > π̄C , i.e.,a violation of
Lemma 5. Therefore, σC1 ≤ σC∗1 is the only possibility in equilibrium.

Finally, since Challenger must be indifferent at t = 0 to play σC∗1 , then σD1 = σ̃D = σD∗1 .

A.3 Proof of Proposition 2

A.3.1 Proof of Lemma 2

Proof. When Challenger is more intimidating, the conflict horizon n satisfies
(
π̄C
)n
≤

πC0 (x) ≤
(
π̄C
)n+1

. As ∆ ↓ 0, both π̄C → 1 and π̄D → 1. Therefore the conflict horizon n

tends to infinity. Taking (natural) logarithm and rearranging we get

1 ≤ 1
n

(
ln πC0 (x)

ln π̄C

)
≤ 1 + 1

n
⇒ lim

∆↓0

1
n

(
ln πC0 (x)

ln π̄C

)
= 1.

This implies the first equality below:

lim
∆↓0

ln
(
π̄D
)n

= lim
∆↓0

n
(
ln π̄D

) 1
n

(
ln πC0 (x)

ln π̄C

)
=
(
ln πC0 (x)

)
lim
∆↓0

(
ln π̄D
ln π̄C

)
. (20)

Noting that

lim
∆↓0

(
− ln π̄D

ln π̄C

)
= lim

∆↓0

 ln
(
1−

(
1− e−r∆

)
`C
)

ln (e−r∆ [1 + (1− e−r∆) `D])

 ,
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using L’Hôpital’s rule, and taking the limit as ∆ ↓ 0 yields

lim
∆↓0

(
− ln π̄D

ln π̄C

)
= `C

1− `D . (21)

Note that the last expression is strictly negative because Assumption 1 implies that π̄D, π̄C ∈
(0, 1). Substituting the limit in (21) into equation (20) gives the probability with which De-
fender concedes at the beginning of the limit game:

lim
∆↓0

(
1− πD

(π̄D)n
)

= 1− πD/
{

lim
∆↓0

(
π̄D
)n}

= 1− πD
(
πC0 (x)

) `C

1−`D
.

Finally, by Remark 1, lim∆↓0 u
C
(
πC0 (x) , πD

)
= 1 − πD

(
πC0 (x)

) `C

1−`D − lim∆↓0 L
C = 1 −

πD
(
πC0 (x)

) `C

1−`D
.

A.3.2 Proof of Proposition 2 for small ∆ > 0

Proof. We now show that that the solution to the game with discrete (i.e. ∆ > 0) but fre-
quent enough opportunities to concede approaches the solution of the limiting problem
we solve in the body of the paper. A value of ∆ determines δ = e−r∆ and thus the thresh-
olds π̄C and π̄D according to (2) and (3), which in turn determine the conflict horizon
n (∆, ᾱ) as

πC/ (1− ᾱ)
(π̄C)n(∆,ᾱ)−1 < π̄C ≤ πC/ (1− ᾱ)

(π̄C)n(∆,ᾱ) . (22)

This value of n (∆, ᾱ) in turn determines possible values of the equilibrium probability
σ̄D1 (x) = PD (∆, ᾱ) with which Defender concedes in period 1 if Challenger is more in-
timidating:

PD (∆, ᾱ) = 1− πD

(π̄D)n(∆,ᾱ) (23)

if both inequalities in (22) are strict, and

PD (∆, ᾱ) := 1− πD

(π̄D)n(∆,ᾱ)+1 ≤ PD (∆, ᾱ) ≤ 1− πD

(π̄D)n(∆,ᾱ) =: P̄D (∆, ᾱ) (24)

if the inequality in (22) holds as an equality.

Defender’s problem is

P∆ : max UD
∆ (x, ᾱ) s.t. (x, ᾱ) ∈ F (∆) , (25)
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where F : [0, 1] → [0, 1] ×
[
0, 1− πC0

]
gives the set of feasible pairs of (x, ᾱ) at ∆. A pair

(x, ᾱ) ∈ F (∆) if the following indifference condition holds, with n (∆, ᾱ) defined as in
(22), and PD (∆, ᾱ) defined by (23) or (24) as the case may be:

PD (∆, ᾱ)− `C
(
1− e−r∆

)
= x. (26)

The limit problem studied in the body of the paper (see Section 5) is

P0 : max UD
0 (x, ᾱ) s.t. (x, ᾱ) ∈ F (0) , (27)

where a pair (x, ᾱ) ∈ F (0) if the following indifference condition holds

x = 1− πD
(
πC/ (1− ᾱ)

) `C

1−`D =: PD (0, ᾱ) . (28)

We show in two steps that F is a compact-valued correspondence continuous at ∆ = 0.

Step 1. Let
(
∆k
)
k≥1 be a sequence decreasing to 0; let

(
xk, ᾱk

)
k
∈ F

(
∆k
)

be a sequence
of feasible points. Consider a subsequence along which ᾱk → ᾱ, drop the terms that are
not in this convergent subsequence, and renumber the sequence. It is easy to see from (22),
(23), and (24) that the correspondence mapping from ᾱ values to x values is a step function
for any ∆. Let the maximum and minimum values of x such that

(
xk, ᾱk

)
∈ F

(
∆k
)

be denoted by
[
x
(
∆k, ᾱk

)
, x̄
(
∆k, ᾱk

)]
. Fix any η > 0. Since a step function is upper

hemicontinuous, there exists an integer K1 such that for all values of k ≥ K1 we have

dH
(
xk,

[
x
(
∆k, ᾱk

)
, x̄
(
∆k, ᾱk

)])
< η/2,

where dH denotes the Hausdorff distance in Euclidean space. Now from Lemma 2 we get

lim
∆↓0

PD (∆, ᾱ) = PD (0, ᾱ) = lim
∆↓0

P̄D (∆, ᾱ) , (29)

which by (26) implies that the size of the steps (the difference between the lower and
upper bounds in (24)) vanishes: limk→∞ x

(
∆k, ᾱk

)
= PD (0, ᾱ) = limk→∞ x̄

(
∆k, ᾱk

)
.

Hence there exists K2 ≥ K1 such that for all k ≥ K2 we have

dH
(
PD (0, ᾱ) ,

[
x
(
∆k, ᾱk

)
, x̄
(
∆k, ᾱk

)])
< η/2.

The triangle inequality for Euclidean spaces implies that dH
(
xk, PD (0, ᾱ)

)
< η for all

k ≥ K2. In other words, the limit of
(
xk, ᾱk

)
as k tends to infinity is

(
PD (0, ᾱ) , ᾱ

)
, which
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lies in F (0) by (26). Therefore, F is upper hemicontinuous at ∆ = 0.

Step 2. For any sequence
(
∆k
)
k≥1 decreasing to 0, fix (x, ᾱ) ∈ F (0), which implies x =

PD (0, ᾱ). Then pick any sequence
(
xk, ᾱk

)
k such that each ᾱk = ᾱ, and

(
xk, ᾱ

)
∈ F

(
∆k
)
.

By (29) and Lemma 2 the bounds in (24) and the expression in (23) reduce to PD (0, ᾱ)
as ∆k → 0. Therefore, (26) implies that we have xk → PD (0, ᾱ) = x; hence F is lower
hemicontinuous at ∆ = 0.

Since F is both upper and lower hemicontinuous at ∆ = 0, it is continuous at ∆ = 0.

The objective function UD
∆ (x, ᾱ) is jointly continuous in the variables (x, ᾱ) and the

parameter ∆. Then the maximum theorem immediately implies that the set of optimal
solutions is also upper hemicontinuous at ∆ = 0. In other words, as ∆ goes to zero
all optimal solutions of the constrained maximization problem P∆ approach the unique
solution of the problem P0, the limiting problem we solve in the body of the paper.

Thus there exists ∆̄ > 0 such that for any ∆ < ∆̄ the optimal offer x∆ will be accepted
with probability ᾱ∆ (x∆) > 0. By Remarks 4 and 5, we know that an offer x < uC

(
πC , πD

)
cannot be accepted with positive probability, while an offer x > uC

(
1, πD

)
cannot be re-

jected with positive probability. Thus an optimal offer x∆ lies in
[
uC
(
πC , πD

)
, uC

(
1, πD

)]
.

Furthermore, once again by upper hemicontinuity of the solution set, normal Challenger
mixes in response to any optimal offer with probabilities close to ᾱ∗/(1−πC) ∈ (0, 1), and
thus bounded away from 1.

A.4 Proof of Proposition 3

Proof. Preliminaries. The negotiation stage lasts for K rounds k = −K + 1, . . . ,−1, 0.
In round k, a decision history hDk at which Defender moves comprises a vector xk−1 =
(x−K+1, . . . , xk−1) of rejected past offers; the decision history hCk where Challenger moves
is captured by xk, which comprises a vector of rejected past offers and the offer xk cur-
rently on the table. A strategy of Defender maps xk−1 into an offer in [0, 1]; a strategy of
normal Challenger maps each xk into a probability of acceptance in [0, 1]. The acceptance
probabilities of normal Challenger are denoted by αk (xk) while the total probabilities are
ᾱk (xk) =

(
1− πCk−1

)
αk (xk), where πik−1 is the probability with which player i ∈ {C,D}

is publicly believed to be tough at the end of round k − 1. Since an offer xk < 1 is rejected
by tough Challenger, beliefs about Challenger are determined by Bayes’ rule and Chal-
lenger’s equilibrium strategy. The belief that Defender is tough equals πD throughout the
negotiation phase, since Defender cannot signal what he does not know.

The optimal offer at every history is Markovian, i.e., it deterministically depends on
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current beliefs. To see this, notice that the optimal offer at 0 is Markovian and determin-
istic, depending only on πC−1. Hence, Challenger’s expected payoff of rejecting an offer at
−1 depends only on πC−1. In turn this implies that normal Challenger’s optimal response
to any offer at−1 depends only on the current offer x−1 and the beliefs

(
πC−1, π

D
)
; thus the

optimal offer at −1 depends only on the beliefs. By induction it follows that the optimal
offer in all rounds k = −K + 1, . . . ,−1, 0 is Markovian.

Limit as ∆ ↓ 0 and K = 2. First, consider the limiting model as ∆ goes to zero and fix
K = 2. Let A

(
πC , πD

)
be the unique solution in ᾱ to the first-order condition (15); let

X
(
πC , πD

)
be the corresponding value of x. From an inspection of (15) it follows that A

is increasing in πC (strictly increasing unless A
(
πC , πD

)
= 1), and so are the posterior

probability πC/
(
1− A

(
πC , πD

))
and the offer X

(
πC , πD

)
.

Take any candidate equilibrium of the 2-offer game with equilibrium acceptance prob-
abilities (ᾱ−1, ᾱ0) such that ᾱ−1 > 0. The total probability (summed over rounds and
types) that conflict will not begin is then given by p = ᾱ−1 + (1− ᾱ−1) ᾱ0. By Bayes’ rule,
the public belief that Challenger is tough at the start of conflict is

πC0 = πC−1
1− ᾱ0

= πC

(1− ᾱ−1) (1− ᾱ0) = πC

1− p.

Clearly, sequential rationality requires that x0 = X
(
πC−1, π

D
)
, where πC−1 = πC/ (1− ᾱ−1) >

πC (since ᾱ−1 > 0). Hence x0 > X
(
πC , πD

)
. It must also be the case that Challenger is

indifferent over the offer x−1 at round −1 and the offer x0 at round 0. Thus the cost, mea-
sured at round 0, to Defender of getting the initial offer accepted with probability ᾱ−1 at
round −1 equals x0. It follows that if the interval of time between rounds −1 and 0 is of
length ∆−1,0 we must have

x−1e
∆−1,0 = x0.

Therefore, the utility of Defender is the same as if he were to strike a deal with a mass p of
Challengers at a cost of x0 per unit mass. Denote this utility by ÛD

(
x0, p; πC , πD

)
. Since

x0 ≥ X
(
πC , πD

)
and p > A

(
πC , πD

)
, it follows that

ÛD
(
x0, p; πC , πD

)
< ÛD

((
X
(
πC , πD

)
,A

(
πC , πD

))
; πC , πD

)
, (30)

whatever the time interval between the rounds of negotiation.

If, instead, Defender deviates in round 1 and chooses an offer so small (say x−1 = 0)
that Challenger surely refuses (ᾱ−1 = 0), beliefs will be unchanged; in the continuation
game it will be sequentially rational to make the optimal offer X

(
πC , πD

)
at time 0 and
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have it accepted with probability A
(
πC , πD

)
. By inequality (30) this is a strictly profitable

deviation. This establishes the result for the limiting model with K = 2.

Small but positive ∆. We now prove our proposition by induction on the number of
rounds. First, consider K = 2. We proceed by contradiction.

If the proposition is not true, there exists ε ∈
(
0, 1− πC

)
, a sequence ∆n ↓ 0, and a se-

quence of equilibrium outcomes
(
ᾱ−1

(
∆n, πC

)
, xn

)
of the game with interval ∆n between

consecutive periods of conflict such that the probability of the first-round equilibrium of-
fer being accepted is bounded away from zero along the sequence: ᾱ−1

(
∆n, πC

)
≥ ε. This

immediately implies that the corresponding posteriors satisfy the bound:

πC−1

(
∆n, πC

)
:= πC

1− ᾱ−1 (∆n, πC) ≥
πC

1− ε.

Let γ be the function mapping the prior to the posterior in a one-offer limiting game (as
∆ ↓ 0). Let η := γ

(
πC/ (1− ε)

)
− γ

(
πC
)
. It can be seen from the first-order condition

(15) that γ is continuous in πC . Because the solution to the Defender’s problem in the
one-offer game is upper hemicontinuous in ∆ (see Step 2 in A.3.2) and γ is continuous
and increasing in the prior, there exists ∆̄1 > 0 such that

πC0
(
∆n, πC

)
≥ γ

(
πC

1− ε

)
− η

4 ∀∆
n ∈

(
0, ∆̄1

)
.

Furthermore, there exists ∆̄2 ≤ ∆̄1 such that

| πC0
(
∆n, πC

)
− γ

(
πC
)
|≤ η

4 ∀∆
n ∈

(
0, ∆̄2

)
.

These last two inequalities immediately imply that πC0
(
∆n, πC

)
> γ

(
πC
)

+ η/2 for suf-
ficiently small ∆n. That is, for sufficiently small ∆n, the posterior belief that Challenger
is tough after two rounds of negotiation in which the first offer is accepted with at least ε
probability is greater than and bounded away from the posterior if the first offer is surely
rejected. We can rewrite this condition as

πC

1− p (∆n) ≥
πC

1− ᾱ∗ + η

2 ,

where p (∆n) is the total (over two periods) probability with which an offer is accepted
in the nth game along the sequence. This inequality is clearly violated if there is a subse-
quence along which we have p (∆n) → p (0). Hence we must have p (∆n) > p (0) + ζ for
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some ζ > 0. Now note that, for each ∆n, any feasible solution of the two-offer game is
also a feasible solution of the one-offer game, and vice versa. Thus, we have constructed
a sequence of equilibrium acceptance probabilities of one-offer games with ∆n going to
0 such that the equilibrum probability of acceptance of the single offer is bounded away
from p (0) from above along the sequence.

By upper hemicontinuity of the set of optimal solutions (see Step 2 in A.3.2), this
means we have a new optimal solution of the limiting (as ∆ ↓ 0) problem, with a proba-
bility of acceptance that is at least p (0) + η. This contradicts our proof that the one-offer
limiting game has a unique solution with probability of acceptance p (0).

We have therefore proven that a two-offer game is essentially the same as the one-offer
game. Therefore, adding one more offer (K = 3) is equivalent to adding the second offer
to the one-offer game. It follows that for anyK > 1, all offers but the last one are accepted
with vanishingly small probability.

A.5 The role of Assumption 2 as ∆→ 0

We solve the conflict part of our model for any positive ∆ subject to Assumption 2. Sup-
pose that, contrary to Assumption 2, ln πC0 (x) / ln π̄C = m ∈ N\{1}while ln πD0 (x) / ln π̄D <

m (the case ln πD0 (x) / ln π̄D ∈ N \ {1} is symmetric). Lemmas 4 to 6 do not rely on As-
sumption 2. Therefore, in all equilibria, beliefs move according to (5) from period 2, stage
1 onward. The first part of the proof of Proposition 1, then guarantees that there exists
an equilibrium as in Proposition 1: at t = 1, Challenger attacks with probability 1 and
Defender concedes with probability 1 − πD0 (x) /

(
π̄D
)m

; πDm−1 (x) = π̄D and πCm (x) = π̄C .
Yet, there exist also other equilibria. In all other equilibria, at t = 1, Challenger attacks
with probability 1 and Defender concedes with probability p:

p ∈
[
1− πD0 (x)

(π̄D)m , 1−
πD0 (x)

(π̄D)m−1

]
.

Therefore, πCm (x) = π̄C and πDm−1 (x) < π̄D ≤ πDm (x). Lemmas 4 to 6 guarantee that these
are all the possible equilibria. While this means there are multiple equilibria, it is easy to
see from Lemma 1 that(

1− πD0 (x)
(π̄D)m−1

)
−
(

1− πD0 (x)
(π̄D)m

)
↓ 0 as ∆ ↓0.
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Therefore in the limit as ∆ ↓ 0 , the equilibrium strategies are uniquely determined by
those in Proposition 1, Parts 1(a), 2, and 3, and Challenger’s continuation payoff from
conflict converges to the one given by Remark 1.
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